THE BIOCHEMICAL ROLE OF SODIUM POTASSIUM PUMP

THE BIOCHEMICAL ROLE OF SODIUM POTASSIUM PUMP

TABLE OF CONTENTS

Title page    –         –         –         –         –         –         –         –         –         i

Certification –         –         –         –         –         –         –         –         –         ii

Dedication   –         –         –         –         –         –         –         –         –         iii

Acknowledgements         –         –         –         –         –         –         –         iv

Table of Contents  –         –         –         –         –         –         –         –         v

CHAPTER ONE: INTRODUCTION        –         –         –         –         1

CHAPTER TWO: OVERVIEW OF ACTIVE TRANSPORT         3

2.1     Active Transport    –         –         –         –         –         –         –         5

2.1.1  Types of Active Transport         –         –         –         –         –         6

2.1.2  Primary Active Transport          –         –         –         –         –         8

2.1.3  Secondary Active Transport      –         –         –         –         –         10

2.2     Sodium Potassium Pump –         –         –         –         –         –         12

2.3     Functions of Sodium-Potassium pump –         –         –         –         13

2.4     Disorder of Sodium-Potassium Pump  –         –         –         –         15

2.5     Clinical Significance of Sodium-Potassium Pump   –         –         17

2.6     Mechanism of Action of Sodium Potassium Pump  –         –         17

2.7     Regulation of Sodium Potassium Pump         –         –         –         23

CHAPTER THREE: THE BIOCHEMICAL ROLE OF SODIUM POTASSIUM PUMP

3.1     Na+/K Pump and Its Functions  –         –         –         –         –         26

3.1.1  Maintenance of Resting Potential        –         –         –         –         28

3.1.2  Reversal Potential  –         –         –         –         –         –         –         29

3.1.3  Transport     –         –         –         –         –         –         –         –         31

3.1.4  Controlling Cell Volume –         –         –         –         –         –         32

3.2     The Function of Signal Transducer      –         –         –         –         33

3.2.1  Controlling Neuron Activity States      –         –         –         –         35

3.3     Sodium-Potassium (Na+/K+) ATPase Subunit         –         –         37

3.3.1  α- Subunit    –         –         –         –         –         –         –         –         38

3.3.2  β-Subunit     –         –         –         –         –         –         –         –         39

3.3.3  ϒ-Subunit    –         –         –         –         –         –         –         –         40

3.4     The Role of Na+/K+-ATPase in Cancer Disease       –         –         40

3.5     The Role of Na+/K+– ATPase in the Lung Disease   –         –         42

3.6     The Role of Na+/K-ATPase as Receptors       –         –         –         44

CHAPTER FOUR: SUMMARY AND CONCLUSION

4.1     Summary     –         –         –         –         –         –         –         –         46

4.2     Conclusion  –         –         –         –         –         –         –         –         47

References

 

CHAPTER ONE: INTRODUCTION

The Na+/K+ pump is an electrogenic transmembrane ATPase first discovered in 1957 and situated in the outer plasma membrane of the cells; on the cytosolic side.

The Na+/ K+ ATPase pumps 3Na+ out of the cell and 2K+ that into the cell, for every single ATP consumed. The plasma membrane is a lipid bilayer that arranged asymmetrically, containing cholesterol, phospholipids, glycolipids, sphingolipid, and proteins within the membrane. According to (Geering, 2008). The Na+/K+-ATPase pump helps to maintain osmotic equilibrium and membrane potential in cells.

The sodium and potassium move against the concentration gradients. The Na+ /K+-ATPase pump maintains the gradient of a higher concentration of sodium extracellularly and a higher level of potassium intracellularly. The sustained concentration gradient is crucial for physiological processes in many organs and has an ongoing role in stabilizing the resting membrane potential of the cell, regulating the cell volume, and cell signal transduction (Pivovcrou et al., 2018). It plays a crucial role on other physiological processes, such as maintenance of filtering waste products in the nephrons (kidneys), sperm motility, and production of the neuronal action potential (Clausen et al., 2017). Furthermore, the physiologic consequences of inhibiting the Na+-K+ ATPase are useful and the target in many pharmacologic applications.

Na/K-ATPase is a crucial scaffolding protein that can interact with signaling proteins such as protein kinase C (PKC) and phosphoinositide 3-kinase (Mohammadi et al., 2001).

 

Leave a Reply

Your email address will not be published. Required fields are marked *